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The different contributions to the spin density of coupled polynuclear metal systems are analysed in the framework 
of perturbation theory. The main contribution consists in a weighted superposition of normalized local spin densities 
arising from each metal site, the weights being given by usual spin coupling matrix elements. When this analysis 
is applied to the spin densities calculated for the high-spin and broken symmetry states of [ F ~ z S Z ( S H ) ~ ] ~ -  and 
[FeZSz(SH),]3-, it appears that the local spin densities differ significantly from those calculated for the [Fe(SCH3)4]- 
and [Fe(SCH3)4]Z- monomers. In particular, the spin densities on the iron atoms are markedly smaller in the 
dinuclear systems. Although these results were obtained on model centers, they are fully consistent with the 
spectroscopic characteristics of these centers in proteins. 

The magnetic properties of exchange-coupled polynuclear metal 
systems are currently the subject of intense experimental and 
theoretical  investigation^.^-^ Their interpretation is usually based 
on an appropriate spin Hamiltonian, which comprises an Heisen- 
berg term describing the exchange interactions, along with 
different local terms which describe the magnetic properties of 
each metal site. The physical observables of the coupled system 
are then expressed in terms of the local parameters by standard 
angular momentum algebra. This so-called vector coupling 
procedure is supported by the succe88 of semiempirical approaches, 
in which parameters measured in closely related mononuclear 
centers are used as local parametersS2 However, it is well-known 
that theexchange phenomenonarises from theoverlapof magnetic 
orbitals centered on different metal sites. In the presence of 
strong exchange interactions, it is then expected that these sites 
lowat least in part their individuality, so that thelocal parameters 
become ill-defined. 

The concept of spin density can be used to shed some light on 
this problem. The spin Hamiltonian parameters of a mononuclear 
metal center are closely related to the distribution of its normalized 
spin density d o ) .  For example, the isotropic contact component 
of the hyperfine interactions with a magnetic nucleus located at 
FN is proportional to d(?N), and the anisotropic components are 
also largely determined by the d ( i )  distribution.6 Likewise, the 
g and zero-field splitting tensors depend primarily on the nature 
of the metal ion and the symmetry of the center, but they are also 
sensitive to the delocalization of the magnetic orbitals onto the 
ligands. When such a metal center belongs to a polynuclear 
system, its spin density distribution reflects the modulation of the 
local properties brought about by delocalization effects within 
the system and consequently the values of the local spin 
Hamiltonian parameters in the coupled system. 

In this paper, the different contributions to the spin density of 
a weakly coupled polynuclear metal cluster are analyzed in the 
framework of perturbation theory. For a trapped-valence system, 
the main contribution is simply given by a weighted superposition 
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of normalized local spin densities arising from each metal site. 
Owing to the superexchange coupling, residual amounts of spin 
density are also transferred on adjacent sites. The extension to 
the case of delocalized valence is explicited for dinuclear systems. 
The formalism is then applied to extract local spin densities from 
the spin populations calculated by Noodleman et aL7 for 
mononuclear and dinuclear iron-sulfur centers. It turns out that 
these local spin densities can be used to predict the S7Fe isotropic 
hyperfine constants for reduced 2Fe2S ferredoxins, from a 
McConnell type relation calibrated for rubredoxin. 

The Model 

We first consider a mononuclear metal center comprising n 
magnetic orbitals vi ( i  = 1, ..., n )  which are assumed to be 
normalized and orthogonal. These orbitals are centered on the 
metal and are delocalized onto the surrounding ligands. The 
different states can be represented by the functions 

where XS,M is a n-electron spin function and dl is an antisym- 
metrization operator. The spin density in state $S,M defined by 

n 

is given by 
N 

P ~ , M ( J )  = CIqi(i)fMS, J2siz(xs,M) (3) 
i= I 

This expression can be simplified by using the Wigner-Eckart 
theorem 

n 

(4) 

where (SllsillS) is a reduced matrix element. It is useful to consider 
the normalized spin density ds(i )  
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which is independent of M and is related to P S ~ M  by8 

PS,M( i )  = 2Md,(i) 
&(i) is normalized to unity. For the high-spin state with S = 
S,,, = n/2 ,  it is easy to show that the reduced matrix element 
involved in (4) is equal to 1 /(2Smnx) = 1 / n ,  so that the normalized 
spin density is simply equal to 
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We now consider a polynuclear system made of several 
interacting units labeled with a = A, B, C, ..., each unit being 
centered on a high-spin metal ion with spin S,. In this section, 
we restrict the study to the case of trapped-valence sites. Using 
perturbation theory, Noodleman and Case have shown that the 
wave functions describing such a system can be expanded in terms 
of determinants built upon orthogonal orbitals4 

where N is a normalization constant. a&,, is the principal 
determinant corresponding to the ground configuration, which 
can be defined as the lowest energy solution to the open-shell 
restricted HartreeFock equations. It is built on a set of orbitals 
pi, comprising doubly occupied ligand orbitals and magnetic 
orbitals 'pp which here reduce to metal d orbitals. The terms @" 
arise from the transfer of electrons from the ligands to the metal 
d orbitals, which leads toother sets (pi" of magneticorbitals. These 
terms are responsible for covalency effects, and for the ligand 
spin polarization contribution to the exchange interactions. The 
terms arise from the transfer of electrons from a d orbital to 
another d orbital centered on an adjacent metal, which leads to 
new sets py of magnetic orbitals. These terms are responsible for 
a weak transfer of spin density from one metal to another and 
for the Anderson superexchange contribution. 

The essential part of the spin density is determined by @&, 
and by the mixing with the ligand spin polarization terms 
@iM which accounts for metal-ligand covalency. Using the 
definition given in (2), it is shown in the Appendix that this part 
p& can be written 

P&(i) = (xS,M12s~zKS,M)d~(i) ( 6 )  
Q 

XS,M is the spin function associated with @'&and the ligand spin 
polarization terms (PisM, and d,(i) represents a local spin density 
arising from the magnetic orbitals qfQ and (pi", of unit a: 

According to expression 6, prM.(i) represents a weighted 
superposition of normalized spin densities arising from each metal 
site, the weights being given by the usual spin coupling matrix 
elements. This expression is isomorphic to well-known relations 
derived by the vector coupling procedure,2 in which the hyperfine 
and g tensors of the system are expressed in terms of corresponding 
local parameters l i ,  and g,: 

Thus, a, and 2, can be interpreted as the spin Hamiltonian 
parameters of a mononuclear center characterized by the 
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Figure 1. Two possible electronic configurations of a binuclear mixcd- 
valence system. SI and S2 are respectively equal to n / 2  and (n - 1)/2. 

normalized spin density d,(i). Strictly speaking, the residual 
spin densities transferred on site a from all adjacent sites by the 
superexchange mechanism9 also contribute to the hyperfine 
interactions (see Appendix). In a spin Hamiltonian description, 
these contributions are represented by transferred hyperfine terms 
likelo 

However, these ierms are expected to be much smaller than the 
direct one S,.a,.I, and arevery difficult todetect experimentally.lO 

Extension to Mixed-V.kace Systems 
In the preceding section, the expression of the spin density was 

obtained by assuming that a well-defined spin value S, could be 
attributed to each site a of the polynuclear system. This is no 
longer possible when valence delocalization effects are significant. 
In order to illustrate how the expressions have to be modified, let 
us consider the simple case of a dinuclear center comprising two 
sites, A and B. Each site can receive n unpaired electrons, and 
an extra electron can localize either on A or B (Figure 1). This 
defines two different configurations, giving states labeled $L and 
$R respectively. The states of the system are sought in the form 

+s.M = c,&,M + cL&,M 

where $:,M and $k,M are functions similar to those of the 
preceding section. Usually, the mixing coefficients CR and CL 
are calculated variationnally by minimizing the energy of $sS,M. 
Their value is determined by (i) the diagonal elements and 
H&, which are sensitive functions of the geometry of the system 
and which vary with S according to the Land4 interval rule, and 
(ii) the off diagonal element H& which is proportional to (S + 
I / * )  in the weak overlap If the overlap between qt and 
cpy is sufficiently weak that cross terms can be neglected, the spin 
density in state $S,M is given by 

PS,M(?)  = IcR12Pt,M(i) + IcL12Pi,M(i) 

where p;,,and 
be expanded according to expression 6. 

are trapped valence spin densities which can 

P:,M()) = (g, Jw,&,~)d%i) i- (@,d%G,,w)d:(i) 

Applying to this expression the isomorphism defined previously, 
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we obtain for the hyperfine and g tensors of the mixed-valence 
system 
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Table I. Spin Populations Computed in Reference 7 for 
Mononuclear and Dinuclear IronSulfur Models" 

Fe(SCH1)d'- Fe(SCH1)d2- 

spinstate 2s Fe(II1) 2s 2s Fe(I1) 2s 

and 

9 = KI2, + K292 

2 2  = lCRl2g + lCLl2& 

with 

K, Ms, J2sazW,y,M)/2M 01 = 132 
The following notations are used: af: and 5; are the hyperfine 
tensors for site A associated with the local spin densities 
d t  and d; respectively, while sf' = $A and & = & represent 
the g tensors of the site with spin SI, in states #R and qL, 
respectively. Although expressions equivalent to (1 1) and 
(12) have already been given in the l i t e r a t ~ r e , ' ~ . ~ ~  it is worth 
noting that they are deduced in the present work by reference 
to an orbital model. In the trapped-valence limit where ICR~~ 
= 1 and ICL~~ = 0, (11) and (12) reduce to (8) and (9), 
respectively. The forms of expressions 1 1  and 12 indicate 
that the hyperfine tensor is expected to be much more affected 
by valence delocalization effects than the g tensor. This can 
be illustrated by considering the special case of equivalent 
sites: 

af: = = a, a;= a; = a2 

gp=gf.=2, g=94=92 
In this case, expression 12 for the g tensor no longer depends 
on the mixing coefficients and reduces to (9) ,  while (1 1) does 
not reduce to (8). In particular, when delocalization is 
complete 

= ' / 2  

and the following simple relation applies 

A A  = A B  = (KIal + K2a2)/2 

which is indeed very different from eq 8. 

Application to 2FezS Clusters 
2Fe2S clusters play an important role as redox centers in a 

great variety of biological systems. In these centers, each high- 
spin iron is coordinated by a distorted tetrahedron of sulfur ligands, 
and the twosites arecoupled by strong antiferromagnetic exchange 
interactions in both the oxidized [Fe(III), Fe(III)] and reduced 
[Fe(III), Fe(II)] forms. Their magnetic properties have been 
extensively investigated by a number of techniques.14-16 In a 
series of papers, Noodleman and co-workers have interpreted 
those properties through LCAO-Xa valence bond calcula- 
t i ~ n s . ~ ~ ~ J  I They have especially emphasized the importance of 
a broken symmetry state, the spin function of which is given by 
Xes = epJB, where SA and SB are the spins of the two irons 

(12) Perm-Fauvet, M.; Gaudemer, A.; Bonvoisin, J.; Girerd, J.  J.; Boucly- 
Goester, C.; Boucly, P. fnorg. Chem. 1989, 28, 3533. 
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(16) Bertrand, P.; Guigliarelli, B.; More, C. New J .  Chem. 1991, 15, 445. 
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Q:: 0.48 3.64 0.48 0.2 3.30 0.2 

Fe2S2(SH)2- 
~~ 

spin state 2 S  Fe(II1) 2s* Fe(II1) 2s 
XHS 0.66 3.29 1.16 3.29 0.66 
XaS 0.54 3.00 0 -3.00 -0.54 

F ~ z S ~ ( S H ) ~ ~ -  

spinstate 2s Fe(II1) 2s* Fe(I1) 2s 
XHS 0.48 3.19 0.90 3.15 0.44 

0 For convenience, the spin population on the sulfur ligands is given 

XaS 0.48 3.13 0.26 -2.74 -0.30 

for 2 s .  

Table 11. Local Spin Densities Calculated from the Data of Table I ,  
with the Method Described in the Text 

. .. . .. 

spindensity 2 s  Fe(II1) 2S 2s Fe(I1) 2S 
dS,*, 0.092 0.728 0.092 0.05 0.825 0.05 

Fe2S2(SH)d2- 
spindensity 2 s  Fe(II1) 2S* Fe(II1) 2s 
d A  0.12 0.63 0.116 0.029 0.012 
de 0.012 0.029 0.116 0.63 0.12 

F ~ z S ~ ( S H ) ~ ~ -  
spin density 2 s  Fe(II1) 2S* Fe(I1) 2s 

d! dB 0.03 0.004 0.08 0.721 0.09 
0.12 0.63 0.116 0.029 0.012 

3 SB). In particular, this state can be used together with the 
highest-spin multiplet XHS = to evaluate the exchange 
parameter J.9J 1 Noodleman and co-workers have also developed 
Xa valence bond scattered-wave calculations on different iron- 
sulfur model systems including Fe(SCHs)41-J- and F~ZSZ(SH)~~-'~-, 
which mimic the active sites of rubredoxins and 2Fe2S proteins, 
respectively.' For these systems, a population partitioning 
algorithm was used to determine the spin population on every 
atomic site q. In the case of dinuclear centers, the calculations 
were carried out for both the high-spin and broken symmetry 
states (Table I). Since they have been obtained at the same level 
of theoretical calculations, it is particularly interesting to apply 
to these data the analysis presented in the previous sections. 

In the case of the mononuclear complex Fe (SCHj)41-q2-, this 
is simply achieved by dividing the quoted spin populations by 
2M, which is equal to 5 and 4 for the oxidized and reduced forms, 
respectively. The normalized spin densities so obtained differ 
notably in the two redox species (Table 11), which is probably 
related to their quite different bonding scheme.]' Next, we 
consider the diferric form Fe2S2(SH)42- of the dinuclear cluster. 
Application of expression 6 gives 

The local spin densities d~ and d~ overlap only on the bridging 
sulfur ligands and are almost spin independent. Therefore, 
p;: and pp; are expected to have the same magnitude on the 
terminal sulfur ligands. This is observed with a good approxi- 
mation on the spin populations given for these states by the Xa 

(17)  Gebhard, M. S.; Koch, S. A.; Millar, M.; Devlin, F. J.; Stephens, P. J.;  
Solomon, E. I .  J .  Am. Chem. SOC. 1991, 113, 1640. 
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method (Table I). The different spin populations calculated for 
the ferric atoms in these states are presumably due to the 
superexchange contribution which leads to a residual transfer of 
spin density from one metal to the other. According to the 
equations given in the Appendix, this contribution should be 
written 

/ l A \  
pEs(q) = 4dA’(q) + 4dB’(4) 
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\ -  ‘ I  

Application of eqs 13 and 14 to the data of Table I gives d~ 
= 0.63 and de’ = 0.036 for the covalent and superexchange 
contributions to the spin density of FeA(III), respectively. Very 
similar results are obtained if the spin populations of Table 
I are analyzed only in terms of eq 13: inverting these equations 
leads to the “local” spin densities d~ and de reported in Table 
11, which now contain a residual part transferred on the other 
site. Owing to the near equality of the weighting factors 
appearing in (13) and (14), this transferred part represents 
a good approximation of the superexchange contribution. In 
the following, psc will not be explicitely considered in the 
analysis, and the weak transfer of spin density on the adjacent 
metal allowed by the superexchange mechanism will be 
accounted for by a residual delocalization of dA and dB. 

The situation is a priori more involved for Fe2S2(SH4)3- which 
is a mixed-valence system. When reduced [2Fe2S]+ clusters are 
embedded in a protein medium, the two iron sites appear valence- 
trapped on the Mossbauer time scale.I4 Although this could 
originate from asymmetric environments imposed by the protein, 
the observation of similar effects occuring spontaneously for 
synthetic analogs in solution’* suggests a more intrinsic origin. 
In the model studied by Noodleman et a1.,7 a structural asymmetry 
was introduced by allowing a 0.07-A increase of all Fe-S bonds 
at the B site, compared to thegeometry of Fe2S2(SH)42-. Although 
such a marked asymmetry is expected to impose well-trapped- 
valence sites for the doublet ground state and the broken symmetry 
state, the highest spin state is likely substantially delocalized due 
to the (S + ‘/z) dependence of the resonance term H&I1 In 
such a situation, the spin density is given by expression 10, which 
involves too many unknown parameters to be useful. In the broken 
symmetry state, the spin density on atom q is given by 

where the suffix R recalls that the extra electron is localized on 
theright (B) site(Figure 1). Sincethestructureoftheunreduced 
A site is the same in both oxidation states, it is reasonable to 
assume that &q) is essentially equal to dA(q) in F ~ Z S ~ ( S H ) ~ ~ - .  
This hypothesis leads to the local spin densities reported in Table 
11. 

Discussion 
According to expression 6, the main part of the spin density 

of weakly coupled polynuclear systems can be expressed as a 
weighted superposition of local spin densities arising from each 
site, the weights being given by appropriate spin coupling matrix 
elements. These local spin densities are almost spin independent, 
and can be used to define local spin Hamiltonian parameters in 
the coupled system. This formulation is of course congruent 
with the general intuition one may have of a spin coupled system. 
However, our derivation based on the perturbation approach of 
Noodleman and Case4 emphasizes that it only applies in the weak 
coupling limit. 

We proceed by examining if the local spin densities reported 
in Table 11, which were calculated for model iron-sulfur centers, 
reflect the magnetic properties of these centers in proteins. We 
first observe that the spin density transferred from the B site of 

(18) Beardwood, P.; Gibson, J. F.; Johnson, C. E.; Rush, J.  D. J .  Chem. SOC., 
Dalton Trans. 1982, 2015. 

Table 111. Experimental Value (in MHz) of the Isotropic 
Component of the 5’Fe Hyperfine Tensor in Mononuclear and 
Dinuclear Centers of IronSulfur Proteins 

center protein Fe(II1) Fe(W ref 
mononuclear rubredoxin -22.6 -23.3 21 ,22  

desulforedoxin -2 1 -21.3 23 
av a! = -22 (12 = -22.3 

dinuclear parsley ferredoxin -46.4 +19.6 24,25 
spinach ferredoxin 4 7 . 4  +21.0 24,25 
Synechococus -47.9 +21.5 26 

adrenodoxin 4 9 . 7  +25.3 25 
putidaredoxin 4 9 . 7  +23.3 27 

liuidus ferredoxin 

av Ai = 4 8 . 2  A2 = +22.1 

the dinuclear system is much smaller in the reduced state than 
in the oxidized state. This is in keeping with the large decrease 
of the superexchange interactions that occurs upon reduction. 
Furthermore, the local spin density at the iron atoms appears 
significantly smaller in thedinuclear system than in the monomer, 
both at the ferric and the ferrous site. Noodleman and co-workers 
have already noted that covalency effects are more pronounced 
in polynuclear complexes, so that spin Hamiltonian parameters 
measured for the mononuclear center of rubredoxin should not 
be directly transferrable to the polynuclear clusters of ferredoxins.7 
This important point can be studied quantitatively, by considering 
the isotropic components of the S7Fe hyperfine tensors measured 
by Mossbauer and ENDOR spectroscopies in rubredoxin and 
2Fe2S ferredoxins (Table 111). Somedispersion is apparent within 
both groups of centers, which is likely due to structural variations 
imposed by the different proteins. Accordingly, only the average 
values reported in Table 111 will be compared in the following. 
The data quoted for the dinuclear centers concern the localized 
doublet ground state. For this state, application of the vector 
coupling procedure leads to 

A, = (7/3)a, A, = ( 4 / 3 ) a ,  
0 1  and a2 being local parameters for the ferric and ferrous site, 
respectively. Taking for these parameters the average of the 
values measured in rubredoxin and desulforedoxin, we get AI = 
-51 MHz and A2 = +30 MHz. Although the agreement with 
the experimental data is satisfactory for A I ,  the calculated value 
of A2 is much too large. 

The isotropic hyperfine component is essentially of contact or 
core polarization origin, and is therefore expected to be propor- 
tional to the total spin density on the iron atom according to a 
McConnell type relation. The proportionality factor Q can be 
calibrated from the normalized spin density calculated for the 
monomeric model complex (Table 11) and the average ai (i = 1, 
2) used above. This leads to Ql = -30 MHz and Q2 = -27 MHz 
for the ferric and ferrous atom respectively. If the superexchange 
term psc is omitted, the spin density on atom q of the binuclear 
center in the doublet ground state is given by 

By applying to pm(q) evaluated at the ferric and ferrous atoms 
the proportionality factors QI and Q2, we get AI = -44 MHz and 
A2 = +24 MHz. We have checked that very similar results are 
obtained if the pw terms are explicitely considered. The overall 
agreement is then significantly improved by this procedure, 
although it is based on spin densities calculated for model systems. 
The agreement would certainly be better if the spin density 
calculations were carried out for the real structures of the different 
centers quoted in Table 111. 

It is worth noting that the increase of covalency effects in the 
dinuclear system is also apparent when one considers the g and 
zero-field splitting tensors of the ferrous site: in semiempirical 
ligand field models used to describe their variations, it is necessary 
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to assume that theabsolutevalueof the ferrous spin-orbit constant 
A is reduced by covalency to 80 cm-I in dinuclear centers,I6 while 
it is only reduced to 100 cm-l in mononuclear centers.19 

Conclusion 
The spin density analysis presented in this paper brings a new 

perspective on the validity and the significance of local terms in 
the spin Hamiltonian description of exchange-coupled systems. 
From a practical point of view, this approach provides a tool for 
evaluating semiempirically the isotropic component of hyperfine 
tensors in polynuclear clusters. The method, which is based on 
the theoretical determination of local spin densities and their 
calibration to an appropriate monomeric complex, was illustrated 
in the present study by a reinterpretation of the spin populations 
calculated by Noodleman et al. for mononuclear and dinuclear 
iron-sulfur centers. Its application to higher nuclearity iron- 
sulfur centers seems especially promising. For example, the 
calculation of local spin densities in [Fe3S4]+ clusters could explain 
why an isotropic ferric component u = -18 MHz, significantly 
smaller than the values reported in Table I11 for rubredoxin and 
desulforedoxin, accounts for the hyperfine 57Fe tensors measured 
for these centers in proteins.20 The situation is certainly more 
complicated for [Fe&]O, [Fe4S4I3+, and [Fe4S4]+, which are 
delocalized mixed-valence systems. In this case, we have seen 
that it is necessary to consider more than one local spin density 
for each metal site. Their determination will certainly require 
spin density calculations for several broken symmetry states. 
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Appendix 
The spin density in state +S,M is given by 
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of the orbitals. &, represents the spin density in state @’.+, 
which is given by an expression similar to (3): 

di,MO) = CIdCi)12C~’,J2Si~~,M) i 0, K 0 
i 

where cross terms have been neglected due to the orthogonality 

(19) Bcrtrand. P.; Gayda, J. P. Biochim. Biophys. Acta 1988, 954, 347. 
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(21) Schulz, C.; Debrunner, P. G .  J .  Phys. 1976, C6, 37, 153. 
(22) Papaefthymiou, V.; Girerd, J. J.; Moura. I.; Moura, J.; Munck, E. J .  

Acad. Sci. U.S.A. 1909, 86, 9846. 

Am. Chem. Soc. 1987. 109.4703. 
(23) Moura, I.; Huynh, B. H’.; Hausingcr, R. P.; Legall, J.; Xavier, A.; Munck, 

E. J .  Biol. Chem. 1980, 255, 2493. 
(24) Dunham, W. R.; Bearden, A. J.; Salmeen, I .  T.; Palmer, G.; Sands, R. 

H.; Orme-Johnson, W. H.; Beinert, H. Biochim. Biophys. Acta 1971, . .  
253, 134. 

(25) Fritz, J.; Anderson, R.; Fee, J.; Palmer, G.; Sands, R. H.; Tsibris, J.  C. 
M.;Gunsalus, 1. C.;Orme-Johnson, W. H.; Beinert, H. Biochim. Biophys. 
Acra 1971, 253, 110. 

(26) Anderson, R. E.; Dunham, W. R.;Sands, R. H.; Bearden, A. J.;Crespi, 
H. Biochim. Biophys. Acra 1975, 408, 306. 

(27) Munck, E.; Debrunner, P. G.; Tsibris, J. C. M.; Gunsalus, I .  C. 
Biochemistry 1972, 11, 8 5 5 .  

For a weakly coupled polynuclear system, the main contribution 
to p s , ~  arises from the principal determinant @&and from the 
spin polarization terms @’& All these states have the same spin 
functions4 XS,M, which can be expanded in terms of the spin 
functions pim associated with the local spins S,: 

For these states application of the Wigner-Eckart theorem yields 

(PikizVi;) = 6(Ma, M ~ ) M ~ / s ,  

so that the spin densities and p’&, can be expressed as a 
weighted superposition of contributions arising from the different 
units a 

for j = 0, u. The spin functions X’S,M associated with the 
superexchange terms have a different structure.4 For 
example, in the case of a dinuclear system XS,M results from the 
coupling of S A ,  SB whereasX’s,M results from the coupling of (SA 
- I/2) with (SB - I/*). Therefore, these terms must be treated 
separately. Finally, the whole spin density can be written 

PS,M( i )  = P$(V  + PSX,M(j) 

P$V) = (XS, J2SuzWs,M)da(3 

(AI) 

U 

du( i )  = + ~ I % l 2 C ( W  
U 

P&f(’) = (x ’ , ,M12s ’az lx l , ,M)d~( ‘ )  
U 

In eq Al ,  the dominant part of the spin density arises from the 
first term, which accounts for metal-ligand covalency, while the 
superexchange contribution p&, leads only to a residual transfer 
of spin density from one metal to the other. This is illustrated 
in the text by the example of 2Fe2S clusters. 


